Обзор рынка переработки стеклобоя

Определение «стеклобоя» дается в следующих нормативных документах:

- ГОСТ 30772-2001. Ресурсосбережение. Обращение с отходами. Термины и определения» отходы, представляющие собой осколки стекла и (или) оплавленное стекло;
- «ГОСТ Р 52233-2004. Тара стеклянная. Стеклобой» — бой стекла, образующийся при производстве и использовании стеклянных изделий и листового стекла.

Согласно ГОСТ 52233-2004, стеклобой бывает 1-го и 2-го сортов. Линейные размеры кусков стеклобоя 1-го сорта должны быть от 10 до 50 мм. Допускается содержание в партии стеклобоя кусков размером более 50 мм не более 5%, размером менее 10 мм — не более 1%. Размер кусков стеклобоя 2-го сорта не нормируют, масса кусков — не более 2 кг.

Помимо деления по сортам, стеклобой разделяют на 5 марок по цвету и происхождению. Основные марки стеклобоя приведены в таблице 1.

В составе боя любой марки не допускается наличие триплекса (многослойные конструкции, в которых стекла склеиваются полимерными пленками); стекла, армированного металлической сеткой; металлических предметов и пробки; тугоплавкого стекла; зеркал; керамики; фарфора; шлака; угля; кирпича; камней; щебня; бетона; асфальта. Допускается присутствие корковой пробки, бумаги и др. органических примесей (не более

ТАБЛИЦА 1.

Марки стеклобоя

МАРКА	цвет стеклобоя		
БС	Бесцветный		
ПСТ	Полубелый тарный		
ПСЛ	Полубелый листовой		
3C KC	Зеленый		
KC	Коричневый		

источник: ГОСТ 52233-2004

2%) и примесей песка и глины (не более 2%).

Допустимое содержание стеклобоя в партии:

- марок ЗС и КС в марках БС, ПСТ и ПСЛ для 1-го сорта стеклобоя не более 0,5%, для 2-сорта не более 4%;
- марок БС, ПСТ и ПСА в марках ЗС и КС для 1-го сорта стеклобоя — не более 10%, для 2-го сорта — не более 20%:
- марки КС в марке ЗС и марки ЗС в марке КС для 1-го сорта не более 7%, для 2-го сорта не более 15%.

В отличие от других видов бытовых и промышленных отходов, отходы стекла ввиду физических свойств материала хорошо поддаются сортировке. В зависимости от характеристик и качества отходов стекла различают два основных способа обращения с ними:

 Повторное использование оборотной тары — целая стеклянная тара после мытья возвращается в производственный процесс тарирования алкогольных и безалкогольных напитков.

В советское время оборотная тара составляла 85% в общих объемах потребления. Пивная бутылка имела 12-14-кратный оборот, а во время повышенного летнего спроса — 20-30-кратный (оптимальным считается 3—4-кратный). Вторичное стекло активно использовалось в конце 1990-х — начале 2000-х годов во время дефицита тары. За последние годы доля возвратной бутылки упала до 40%. Главная причина падения заключается в низкой стоимости отходов стекла, а также в переходе производителей напитков на эксклю-

2 Рециклинг и выпуск продукции на основе или с использованием вторсырья. Рециклингу могут подвергаться как небитая стеклянная тара, так и различные виды стеклобоя.

Рециклинг отходов стекла подразумевает их дробление, расплавление и последующую фильтрацию. Полученная в результате такой переработки стекломасса может быть использована для изготовления различных изделий.

Основной спрос на стекольное вторсырье формируется со стороны стекольных предприятий. Стеклобой, который предприятия используют в основном для производства тары (банок, бутылок), составляет до 30% от используемого сырья.

В стекольном производстве различают использование двух типов отходов:

- обратные отходы стекла;
- привозные отходы стекла.

Современные технологии стекольного производства подразумевают немедленный сбор и использование обратных отходов: брак и стеклобой, возникающие при производстве стеклоизделий, направляются на повторную переплавку. Данная схема является экономически целесообразной, поскольку в этом случае не происходит смешение различных видов сырья и их загрязнение; минимизированы расходы на транспортировку и склалирование.

Привозные отходы стекла предварительно сортируют по цвету, извлекают механические примеси, мусор, металлические и алюминиевые части, промывают и дробят до фракции 50 мм. Мытый и дробленый стеклобой пригоден для немедленного использования в стекловаренной печи или в других технологических процессах.

Оптимальным сырьем для переработки является небитая стеклянная тара, поскольку ее более удобно сортировать и мыть. Для использования в стекловаренных печах рекомендуется стекольное сырье, в котором содержание сто-

ТАБЛИЦА 2.

Максимальное содержание примесей в привозном стеклобое

ДЛЯ ФЛОАТ-СТЕКЛА			ДЛЯ ТАРНОГО СТЕКЛА	
НАИМЕНОВАНИЕ ПРИМЕСЕЙ	ДОПУСТИМОЕ КОЛИЧЕСТВО ПРИМЕСЕЙ		НАИМЕНОВАНИЕ ПРИМЕСЕЙ	ДОПУСТИМОЕ КОЛИЧЕСТВО
Керамика, фарфор, неорганика	Шириной > 10 мм Шириной < 10 мм	0 г/т < 20г/т	Керамика, фарфор	< 25 г/т
Алюминий	5 г/т		Алюминий	< 5 г/т
Магнитные металлы	5 г/т		Магнитные металлы	< 5r/τ
Древесина	Шириной > 20 мм Шириной < 20 мм	0 г/т 15 г/т	Свинец	< 1 г/т
Бумага	< 15 г/т		Органические примеси	< 500 г/т
Органические вещества	Шириной 15 мм Шириной 15 мм	0 г/т 15 г/т	Влажность	< 2%

источник: «Текарт» на основании данных СтеклоСоюза России

ронних частиц не превышает уровни, представленные в таблице 2.

Применение отходов стекла в стекольном производстве является целесообразным по той причине, что процесс переработки готового стекла более эффективен по сравнению с производством нового стекла из первичных материалов (кварцевого песка, соды и извест-

няка). Конкретные выгоды заключаются в следующем:

- использование отходов стекла в производственном процессе снижает нагрузку на полигоны бытовых и промышленных отходов;
- экономия сырья использование 1 тонны отходов стекла экономит 650 кг песка, 150 кг кальцинированной соды и 200 кг известняка; данная

- экономия распространяется на всю сырьевую цепочку, включая добычу сырья и его перевозку;
- энергозатраты на плавление и фильтрацию стекла на 30-40% ниже по сравнению со стекловарением из первичного сырья;
- процесс переработки отходов стекла характеризуется гораздо меньшим объемом вредных выбросов по сравнению с традиционным процессом стеклоделия. Так, при производстве стеклотары 10% стеклобоя в шихте снижают содержание в выбросах микрочастиц на 8%, окиси азота на 4%, двуокиси серы на 10%. Данное обстоятельство в конечном счете приводит к увеличению срока службы стекловаренных печей.

Помимо стекольных производств, потребителями отходов стекла являются также производители других изделий, в основном *пеностекла* и *стекловолокна*, основной областью применения которых является теплоизоляция.

Уважаемые читатели!

Приглашаем вас оформить подписку на журнал Glass Russia следующим образом:

выслав запрос в произвольной форме на e-mail:

glassrussia@mail.ru

либо заполнив бланк заказа на этой странице и отправив почтой по адресу:

117208, Москва, Сумской проезд д.8 корп.3, офис 200 ООО «Медиапром» БЛАНК ЗАКАЗА

Приглашаем вас оформить редакционную подписку на журнал

«Glass Russia/Стекло»

из расчета 826 рублей за экземпляр

телефон/факс_

имя получателя

С меся	а 201года по месяц 201года включительн		
Число комплект	ЗСумма		
Наименование п	едприятия		
инн	КПП		
Р/сч	в банке		
города			
К/сч	БИК		
почто	вый адрес		
индекс	регион		
	улица		

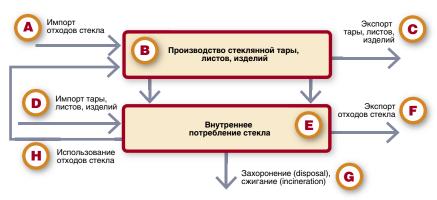


РИС. 1. Структура рынка стекла и отходов стекла (источник: «Текарт»)

РИС. 2. **Объем и динамика образования сбора отходов стекла в России в 2011–2015 гг.** (источник: «Текарт»)

Также стеклобой может быть применен в дорожном строительстве в виде измельченного наполнителя, в сельском хозяйстве для улучшения структуры почв, в качестве заполнителя при производстве лакокрасочных материалов, обойной бумаги, пластмасс, абразивных материалов и проч.

Обобщенная *структура обращения стекла и его отходов* в пределах РФ приведена на рисунке 1.

Сырьем для производства стеклянной тары, стеклянных листов и изделий (В), кроме традиционного первичного сырья (кварцевый песок, известняк, сода), являются также отечественные (Н) и импортные (А) отходы стекла. Часть стеклянной продукции отправляется на экспорт (С), остальное потребляется внутри страны (Е).

Образующиеся отходы стекла идут на сжигание и захоронение (\mathbf{G}), на экспорт (\mathbf{F}), а также на использование в производстве внутри страны (\mathbf{H}).

Данная схема не включает обратные отходы стекла, которые

в полном объеме используются в производственном процессе и, соответственно, не формируют рынок стеклобоя.

Важнейшим показателем качества обращения с ТБО и отходами стекла, в частности, является уровень переработки (recovery rate) — отношение объема отходов, поступивших на переработку, к объему их образования. Соответствующая формула для расчета — (F+H)/E.

Основными источниками образования отходов стекла являются:

1 || Отходы потребления.

Основной объем отходов потребления складывается из использованных бутылок (около 90%). В основной массе отходы стеклотары представлены целыми бутылками одноразового использования, переработка которых является экономически целесообразной. Реальный объем переработки накапливаемых отходов потребления стеклянной тары в России оценивается в 20%.

Согласно оценке «Текарт», в 2012—2015 гг. в России наблюдалась отрицательная динамика сбора отходов стекла. За указанный период его объем сократился на 18,8%. Однако по итогам 2016 года ожидается увеличение показателя на 5,3% по сравнению с предыдущим годом до уровня 1 123 тыс. тонн.

Уровень переработки стекла в России в настоящее время, по оценке «Текарт», составляет *около* 19—20%.

Данный показатель заметно уступает показателям европейских стран и стран Северной Америки. Причина сложившейся ситуации заключается в том, что подавляющий объем отходов стекла приходится на отходы потребления и, прежде всего, стеклянную тару. В отсутствие раздельного сбора мусора, перерабатывающие предприятия не могут в полной мере воспользоваться этим каналом поставки отходов.

Благоприятными факторами развития российского рынка переработки отходов стекла (увеличение объемов переработки) в ближайшие годы будут являться:

- рост потребления стекла и изделий из него;
- повышение цен на первичное сырье (кварцевый песок, известняк, соду) для производства стекла и стеклянных изделий (и, соответственно, рост издержек производителей при использовании первичного сырья).

При этом, однако, значительного роста уровня переработки «при прочих равных» не ожидается.

Ситуация может измениться только с принятием сильных законодательных актов, регламентирующих раздельный сбор мусора или ужесточающих обращение с отходами как со вторичными ресурсами. В этом случае, по оценке «Текарт», уровень переработки отходов стекла может увеличиться до 30—35%.

Анна Печенина, исследовательская компания «текарт» www.research-techart.ru